Game chromatic number of lexicographic product graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Game Chromatic Number of Cartesian Product Graphs

The game chromatic number χg is considered for the Cartesian product G 2 H of two graphs G and H. We determine exact values of χg(G2H) when G and H belong to certain classes of graphs, and show that, in general, the game chromatic number χg(G2H) is not bounded from above by a function of game chromatic numbers of graphs G and H. An analogous result is proved for the game coloring number colg(G2...

متن کامل

Game chromatic number of graphs

y Abstract We show that if a graph has acyclic chromatic number k, then its game chromatic number is at most k(k + 1). By applying the known upper bounds for the acyclic chromatic numbers of various classes of graphs, we obtain upper bounds for the game chromatic number of these classes of graphs. In particular, since a planar graph has acyclic chromatic number at most 5, we conclude that the g...

متن کامل

Improved Bounds for the Chromatic Number of the Lexicographic Product of Graphs

An upper bound for the chromatic number of the lexicographic product of graphs which unifies and generalizes several known results is proved. It is applied in particular to characterize graphs that have a complete core. An improved lower bound is also given.

متن کامل

On the chromatic number of the lexicographic product and the Cartesian sum of graphs

Let G[H] be the lexicographic product of graphs G and H and let G⊕H be their Cartesian sum. It is proved that if G is a nonbipartite graph, then for any graph H, χ(G[H]) ≥ 2χ(H)+d k e, where 2k+1 is the length of a shortest odd cycle of G. Chromatic numbers of the Cartesian sum of graphs are also considered. It is shown in particular that for χ–critical and not complete graphs G and H, χ(G ⊕ H)...

متن کامل

Circular game chromatic number of graphs

In a circular r-colouring game on G, Alice and Bob take turns colour the vertices of G with colours from the circle S(r) of perimeter r. Colours assigned to adjacent vertices need to have distance at least 1 in S(r). Alice wins the game if all vertices are coloured, and Bob wins the game if some uncoloured vertices have no legal colour. The circular game chromatic number χcg(G) of G is the infi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AKCE International Journal of Graphs and Combinatorics

سال: 2015

ISSN: 0972-8600,2543-3474

DOI: 10.1016/j.akcej.2015.11.017